Nuprl Lemma : rv-orthogonal-implies-functional
∀[rv:InnerProductSpace]. ∀f:Point ⟶ Point. (Orthogonal(f) ⇒ (∀x,y:Point.  (x ≡ y ⇒ f x ≡ f y)))
Proof
Definitions occuring in Statement : 
rv-orthogonal: Orthogonal(f), 
inner-product-space: InnerProductSpace, 
ss-eq: x ≡ y, 
ss-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-orthogonal-isometry, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
rv-orthogonal_wf, 
rv-isometry-implies-functional
Rules used in proof : 
because_Cache, 
functionEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point  {}\mrightarrow{}  Point.  (Orthogonal(f)  {}\mRightarrow{}  (\mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y)))
Date html generated:
2016_11_08-AM-09_18_47
Last ObjectModification:
2016_11_02-PM-08_50_01
Theory : inner!product!spaces
Home
Index