Nuprl Lemma : ss-homeo_weakening
∀[X,Y:SeparationSpace].  ss-homeo(X;Y) supposing X = Y ∈ SeparationSpace
Proof
Definitions occuring in Statement : 
ss-homeo: ss-homeo(X;Y), 
separation-space: SeparationSpace, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
ss-homeo: ss-homeo(X;Y), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
top: Top, 
cand: A c∧ B, 
implies: P ⇒ Q, 
ss-eq: x ≡ y, 
not: ¬A, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
ss-id_wf, 
subtype_rel-equal, 
ss-point_wf, 
ss-fun_wf, 
and_wf, 
equal_wf, 
separation-space_wf, 
ss_ap_id_lemma, 
ss-eq_weakening, 
ss-sep_wf, 
all_wf, 
ss-eq_wf, 
ss-ap_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
dependent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
instantiate, 
applyLambdaEquality, 
setElimination, 
productElimination, 
equalityTransitivity, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
lambdaFormation, 
independent_functionElimination, 
lambdaEquality, 
productEquality
Latex:
\mforall{}[X,Y:SeparationSpace].    ss-homeo(X;Y)  supposing  X  =  Y
Date html generated:
2020_05_20-PM-01_19_55
Last ObjectModification:
2018_07_04-PM-11_25_37
Theory : intuitionistic!topology
Home
Index