Nuprl Lemma : ss-mem-empty
∀[X:SeparationSpace]. ∀[x:Point(X)].  uiff(x ∈ ss-empty();False)
Proof
Definitions occuring in Statement : 
ss-empty: ss-empty(), 
ss-mem-open: x ∈ O, 
ss-point: Point(ss), 
separation-space: SeparationSpace, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
ss-empty: ss-empty(), 
ss-mem-open: x ∈ O, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
false: False, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
ss-basic_wf, 
false_wf, 
ss-mem-basic_wf, 
ss-point_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
independent_pairFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
voidElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
rename
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[x:Point(X)].    uiff(x  \mmember{}  ss-empty();False)
Date html generated:
2020_05_20-PM-01_22_09
Last ObjectModification:
2018_07_06-PM-01_59_50
Theory : intuitionistic!topology
Home
Index