Step
*
1
3
1
1
1
1
of Lemma
free-DeMorgan-algebra-hom-unique
1. T : Type
2. eq : EqDecider(T)
3. dm : DeMorganAlgebra
4. eq2 : EqDecider(Point(dm))
5. f : T ⟶ Point(dm)
6. g : Hom(free-DeMorgan-algebra(T;eq);dm)
7. ∀[a:Point(free-DeMorgan-algebra(T;eq))]. (¬(g a) = (g ¬(a)) ∈ Point(dm))
8. h : Hom(free-DeMorgan-algebra(T;eq);dm)
9. ∀[a:Point(free-DeMorgan-algebra(T;eq))]. (¬(h a) = (h ¬(a)) ∈ Point(dm))
10. ∀i:T. ((g <i>) = (h <i>) ∈ Point(dm))
11. ∀[g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm)].
g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm)
supposing ∀x:T + T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(dm))
12. y : T
13. ¬(g <y>) = (g ¬(<y>)) ∈ Point(dm)
14. ¬(h <y>) = (h ¬(<y>)) ∈ Point(dm)
⊢ (g <1-y>) = (h <1-y>) ∈ Point(dm)
BY
{ ((RWW "free-dma-neg dm-neg-inc 10" (-2) THENA Auto) THEN RWW "free-dma-neg dm-neg-inc" (-1) THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. dm : DeMorganAlgebra
4. eq2 : EqDecider(Point(dm))
5. f : T {}\mrightarrow{} Point(dm)
6. g : Hom(free-DeMorgan-algebra(T;eq);dm)
7. \mforall{}[a:Point(free-DeMorgan-algebra(T;eq))]. (\mneg{}(g a) = (g \mneg{}(a)))
8. h : Hom(free-DeMorgan-algebra(T;eq);dm)
9. \mforall{}[a:Point(free-DeMorgan-algebra(T;eq))]. (\mneg{}(h a) = (h \mneg{}(a)))
10. \mforall{}i:T. ((g <i>) = (h <i>))
11. \mforall{}[g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm)].
g = h supposing \mforall{}x:T + T. ((g free-dl-inc(x)) = (h free-dl-inc(x)))
12. y : T
13. \mneg{}(g <y>) = (g \mneg{}(<y>))
14. \mneg{}(h <y>) = (h \mneg{}(<y>))
\mvdash{} (g ə-y>) = (h ə-y>)
By
Latex:
((RWW "free-dma-neg dm-neg-inc 10" (-2) THENA Auto)
THEN RWW "free-dma-neg dm-neg-inc" (-1)
THEN Auto)
Home
Index