Step
*
1
1
1
1
2
2
of Lemma
free-dist-lattice-hom-unique2
.....subterm..... T:t
2:n
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. g : Point(free-dist-lattice(T; eq)) ⟶ Point(L)
6. ∀[a,b:Point(free-dist-lattice(T; eq))]. ((g a ∧ g b = (g a ∧ b) ∈ Point(L)) ∧ (g a ∨ g b = (g a ∨ b) ∈ Point(L)))
7. (g 0) = 0 ∈ Point(L)
8. (g 1) = 1 ∈ Point(L)
9. h : Point(free-dist-lattice(T; eq)) ⟶ Point(L)
10. ∀[a,b:Point(free-dist-lattice(T; eq))]. ((h a ∧ h b = (h a ∧ b) ∈ Point(L)) ∧ (h a ∨ h b = (h a ∨ b) ∈ Point(L)))
11. (h 0) = 0 ∈ Point(L)
12. (h 1) = 1 ∈ Point(L)
13. ∀x:T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(L))
14. x : fset(fset(T))
15. ↑fset-antichain(eq;x)
16. x ∈ Point(free-dist-lattice(T; eq))
17. BoundedDistributiveLattice ⊆r BoundedLattice
18. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
19. ∀[f:Hom(free-dist-lattice(T; eq);L)]. ∀[s:fset(Point(free-dist-lattice(T; eq)))].
((f \/(s)) = \/(f"(s)) ∈ Point(L))
⊢ g"(λs./\(λx.free-dl-inc(x)"(s))"(x)) = h"(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ fset(Point(L))
BY
{ (RWO "fset-image-compose" 0
THEN Auto
THEN RepUR ``compose`` 0
THEN EqCD⋅
THEN Auto
THEN FunExt
THEN Auto
THEN Reduce 0) }
1
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. g : Point(free-dist-lattice(T; eq)) ⟶ Point(L)
6. ∀[a,b:Point(free-dist-lattice(T; eq))]. ((g a ∧ g b = (g a ∧ b) ∈ Point(L)) ∧ (g a ∨ g b = (g a ∨ b) ∈ Point(L)))
7. (g 0) = 0 ∈ Point(L)
8. (g 1) = 1 ∈ Point(L)
9. h : Point(free-dist-lattice(T; eq)) ⟶ Point(L)
10. ∀[a,b:Point(free-dist-lattice(T; eq))]. ((h a ∧ h b = (h a ∧ b) ∈ Point(L)) ∧ (h a ∨ h b = (h a ∨ b) ∈ Point(L)))
11. (h 0) = 0 ∈ Point(L)
12. (h 1) = 1 ∈ Point(L)
13. ∀x:T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(L))
14. x : fset(fset(T))
15. ↑fset-antichain(eq;x)
16. x ∈ Point(free-dist-lattice(T; eq))
17. BoundedDistributiveLattice ⊆r BoundedLattice
18. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
19. ∀[f:Hom(free-dist-lattice(T; eq);L)]. ∀[s:fset(Point(free-dist-lattice(T; eq)))].
((f \/(s)) = \/(f"(s)) ∈ Point(L))
20. x1 : fset(T)
⊢ (g /\(λx.free-dl-inc(x)"(x1))) = (h /\(λx.free-dl-inc(x)"(x1))) ∈ Point(L)
Latex:
Latex:
.....subterm..... T:t
2:n
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. g : Point(free-dist-lattice(T; eq)) {}\mrightarrow{} Point(L)
6. \mforall{}[a,b:Point(free-dist-lattice(T; eq))]. ((g a \mwedge{} g b = (g a \mwedge{} b)) \mwedge{} (g a \mvee{} g b = (g a \mvee{} b)))
7. (g 0) = 0
8. (g 1) = 1
9. h : Point(free-dist-lattice(T; eq)) {}\mrightarrow{} Point(L)
10. \mforall{}[a,b:Point(free-dist-lattice(T; eq))]. ((h a \mwedge{} h b = (h a \mwedge{} b)) \mwedge{} (h a \mvee{} h b = (h a \mvee{} b)))
11. (h 0) = 0
12. (h 1) = 1
13. \mforall{}x:T. ((g free-dl-inc(x)) = (h free-dl-inc(x)))
14. x : fset(fset(T))
15. \muparrow{}fset-antichain(eq;x)
16. x \mmember{} Point(free-dist-lattice(T; eq))
17. BoundedDistributiveLattice \msubseteq{}r BoundedLattice
18. deq-fset(deq-fset(eq)) \mmember{} EqDecider(Point(free-dist-lattice(T; eq)))
19. \mforall{}[f:Hom(free-dist-lattice(T; eq);L)]. \mforall{}[s:fset(Point(free-dist-lattice(T; eq)))].
((f \mbackslash{}/(s)) = \mbackslash{}/(f"(s)))
\mvdash{} g"(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)) = h"(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x))
By
Latex:
(RWO "fset-image-compose" 0
THEN Auto
THEN RepUR ``compose`` 0
THEN EqCD\mcdot{}
THEN Auto
THEN FunExt
THEN Auto
THEN Reduce 0)
Home
Index