Step
*
1
1
1
1
1
1
1
of Lemma
free-dlwc-basis
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : fset(fset(T))
5. ↑fset-antichain(eq;x)
6. fset-all(x;a.fset-contains-none(eq;a;x.Cs[x]))
7. x ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
9. ∀s:fset(T). (s ∈ x
⇒ ({s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))
10. λs.{s}"(x) ∈ fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
11. ∀[x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]. x@0 ≤ \/(λs.{s}"(x)) supposing x@0 ∈ λs.{s}"(x)
12. ∀[u:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]
((∀x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x@0 ∈ λs.{s}"(x)
⇒ x@0 ≤ u))
⇒ \/(λs.{s}"(x)) ≤ u)
13. z : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} @i
14. ↓∃x1:{s:fset(T)| s ∈ x} . (x1 ∈ x ∧ (z = {x1} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))
⊢ fset-ac-le(eq;z;x)
BY
{ (Unfold `fset-ac-le` 0
THEN Using [`eq',⌜deq-fset(eq)⌝] (BLemma `fset-all-iff`)⋅
THEN Auto
THEN ExRepD
THEN (RWO "free-dlwc-point" (-3) THENA Auto)
THEN (HypSubst' (-3) (-1) THENA Auto)
THEN (RWO "member-fset-singleton" (-1) THENA Auto)
THEN (HypSubst' (-1) 0 THENA Auto)
THEN RepeatFor 2 (Thin (-1))) }
1
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : fset(fset(T))
5. ↑fset-antichain(eq;x)
6. fset-all(x;a.fset-contains-none(eq;a;x.Cs[x]))
7. x ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
9. ∀s:fset(T). (s ∈ x
⇒ ({s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))
10. λs.{s}"(x) ∈ fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
11. ∀[x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]. x@0 ≤ \/(λs.{s}"(x)) supposing x@0 ∈ λs.{s}"(x)
12. ∀[u:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]
((∀x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x@0 ∈ λs.{s}"(x)
⇒ x@0 ≤ u))
⇒ \/(λs.{s}"(x)) ≤ u)
13. z : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} @i
14. x1 : {s:fset(T)| s ∈ x}
15. x1 ∈ x
16. z = {x1} ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))}
⊢ ¬↑fset-null({y ∈ x | deq-f-subset(eq) y x1})
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. Cs : T {}\mrightarrow{} fset(fset(T))
4. x : fset(fset(T))
5. \muparrow{}fset-antichain(eq;x)
6. fset-all(x;a.fset-contains-none(eq;a;x.Cs[x]))
7. x \mmember{} Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. deq-fset(deq-fset(eq)) \mmember{} EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
9. \mforall{}s:fset(T). (s \mmember{} x {}\mRightarrow{} (\{s\} \mmember{} Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))
10. \mlambda{}s.\{s\}"(x) \mmember{} fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
11. \mforall{}[x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]
x@0 \mleq{} \mbackslash{}/(\mlambda{}s.\{s\}"(x)) supposing x@0 \mmember{} \mlambda{}s.\{s\}"(x)
12. \mforall{}[u:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))]
((\mforall{}x@0:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x@0 \mmember{} \mlambda{}s.\{s\}"(x) {}\mRightarrow{} x@0 \mleq{} u))
{}\mRightarrow{} \mbackslash{}/(\mlambda{}s.\{s\}"(x)) \mleq{} u)
13. z : \{ac:fset(fset(T))|
(\muparrow{}fset-antichain(eq;ac)) \mwedge{} fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))\} @i
14. \mdownarrow{}\mexists{}x1:\{s:fset(T)| s \mmember{} x\} . (x1 \mmember{} x \mwedge{} (z = \{x1\}))
\mvdash{} fset-ac-le(eq;z;x)
By
Latex:
(Unfold `fset-ac-le` 0
THEN Using [`eq',\mkleeneopen{}deq-fset(eq)\mkleeneclose{}] (BLemma `fset-all-iff`)\mcdot{}
THEN Auto
THEN ExRepD
THEN (RWO "free-dlwc-point" (-3) THENA Auto)
THEN (HypSubst' (-3) (-1) THENA Auto)
THEN (RWO "member-fset-singleton" (-1) THENA Auto)
THEN (HypSubst' (-1) 0 THENA Auto)
THEN RepeatFor 2 (Thin (-1)))
Home
Index