Nuprl Lemma : lattice-meet-0
∀[l:BoundedLattice]. ∀[x:Point(l)].  (0 ∧ x = 0 ∈ Point(l))
Proof
Definitions occuring in Statement : 
bdd-lattice: BoundedLattice, 
lattice-0: 0, 
lattice-meet: a ∧ b, 
lattice-point: Point(l), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lattice-le: a ≤ b, 
subtype_rel: A ⊆r B, 
bdd-lattice: BoundedLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
lattice-0-le, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
and_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
bdd-lattice_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (0  \mwedge{}  x  =  0)
Date html generated:
2016_05_18-AM-11_22_48
Last ObjectModification:
2015_12_28-PM-02_02_43
Theory : lattices
Home
Index