Nuprl Lemma : bfs-equiv-rel

K:RngSig. ∀S:Type.  EquivRel(basic-formal-sum(K;S);a,b.bfs-equiv(K;S;a;b))


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) basic-formal-sum: basic-formal-sum(K;S) equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  least-equiv-is-equiv basic-formal-sum_wf bfs-reduce_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality universeEquality

Latex:
\mforall{}K:RngSig.  \mforall{}S:Type.    EquivRel(basic-formal-sum(K;S);a,b.bfs-equiv(K;S;a;b))



Date html generated: 2018_05_22-PM-09_45_04
Last ObjectModification: 2018_05_20-PM-10_42_23

Theory : linear!algebra


Home Index