Nuprl Lemma : bfs-equiv-rel
∀K:RngSig. ∀S:Type.  EquivRel(basic-formal-sum(K;S);a,b.bfs-equiv(K;S;a;b))
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
least-equiv-is-equiv, 
basic-formal-sum_wf, 
bfs-reduce_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}K:RngSig.  \mforall{}S:Type.    EquivRel(basic-formal-sum(K;S);a,b.bfs-equiv(K;S;a;b))
Date html generated:
2018_05_22-PM-09_45_04
Last ObjectModification:
2018_05_20-PM-10_42_23
Theory : linear!algebra
Home
Index