Nuprl Lemma : least-equiv-is-equiv

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  EquivRel(A;x,y.least-equiv(A;R) y)


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  istype-universe least-equiv-is-equiv-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionIsType universeIsType hypothesisEquality because_Cache universeEquality cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality_alt independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    EquivRel(A;x,y.least-equiv(A;R)  x  y)



Date html generated: 2019_10_15-AM-10_24_57
Last ObjectModification: 2019_08_22-AM-10_52_36

Theory : relations2


Home Index