Nuprl Lemma : least-equiv-is-equiv-1
∀[A,B:Type].  ∀[R:B ⟶ B ⟶ ℙ]. EquivRel(A;x,y.least-equiv(B;R) x y) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
least-equiv: least-equiv(A;R)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
least-equiv: least-equiv(A;R)
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
transitive-reflexive-closure: R^*
, 
transitive-closure: TC(R)
, 
spreadn: spread3, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
guard: {T}
, 
append: as @ bs
, 
infix_ap: x f y
Lemmas referenced : 
rel_path_wf, 
list_wf, 
subtype_rel_self, 
transitive-reflexive-closure_wf, 
subtype_rel_wf, 
istype-universe, 
transitive-closure_wf, 
reverse_wf, 
or_wf, 
map_wf, 
list_induction, 
all_wf, 
list_ind_nil_lemma, 
istype-void, 
map_nil_lemma, 
reverse_nil_lemma, 
map_cons_lemma, 
reverse-cons, 
list_ind_cons_lemma, 
append_wf, 
cons_wf, 
nil_wf, 
pi1_wf, 
pi2_wf, 
length-reverse, 
length-map, 
istype-less_than, 
length_wf, 
transitive-reflexive-closure_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
unionEquality, 
applyEquality, 
inhabitedIsType, 
universeIsType, 
hypothesis, 
because_Cache, 
productEquality, 
instantiate, 
independent_pairFormation, 
functionIsType, 
universeEquality, 
inlFormation_alt, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
inrFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_pairEquality_alt, 
inrEquality_alt, 
inlEquality_alt, 
unionIsType, 
productIsType, 
functionEquality, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  EquivRel(A;x,y.least-equiv(B;R)  x  y)  supposing  A  \msubseteq{}r  B
Date html generated:
2019_10_15-AM-10_24_56
Last ObjectModification:
2019_08_22-AM-10_51_30
Theory : relations2
Home
Index