Nuprl Lemma : transitive-closure_wf

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (TC(R) ∈ A ⟶ A ⟶ ℙ)


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transitive-closure: TC(R) subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s]
Lemmas referenced :  set_wf list_wf and_wf rel_path_wf less_than_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality applyEquality hypothesis universeEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (TC(R)  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_51_07
Last ObjectModification: 2015_12_26-PM-06_58_33

Theory : relations2


Home Index