Nuprl Lemma : rel_path_wf
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[x,y:A]. ∀[L:(a:A × b:A × (R a b)) List].  (rel_path(A;L;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rel_path: rel_path(A;L;x;y)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel_path: rel_path(A;L;x;y)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
universeEquality, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y:A].  \mforall{}[L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List].    (rel\_path(A;L;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_17-AM-09_25_35
Last ObjectModification:
2017_02_27-PM-05_26_14
Theory : relations2
Home
Index