Nuprl Lemma : rel_path_wf

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[x,y:A]. ∀[L:(a:A × b:A × (R b)) List].  (rel_path(A;L;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  rel_path: rel_path(A;L;x;y) list: List uall: [x:A]. B[x] prop: member: t ∈ T apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel_path: rel_path(A;L;x;y) subtype_rel: A ⊆B prop: so_lambda: so_lambda(x,y,z.t[x; y; z]) and: P ∧ Q pi1: fst(t) pi2: snd(t) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination productEquality cumulativity hypothesisEquality because_Cache functionExtensionality hypothesis lambdaEquality functionEquality universeEquality productElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y:A].  \mforall{}[L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List].    (rel\_path(A;L;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-09_25_35
Last ObjectModification: 2017_02_27-PM-05_26_14

Theory : relations2


Home Index