Nuprl Definition : transitive-closure
TC(R) == λx,y. {L:(a:A × b:A × (R a b)) List| rel_path(A;L;x;y) ∧ 0 < ||L||}
Definitions occuring in Statement :
rel_path: rel_path(A;L;x;y)
,
length: ||as||
,
list: T List
,
less_than: a < b
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
lambda: λx.A[x]
,
product: x:A × B[x]
,
natural_number: $n
Definitions occuring in definition :
lambda: λx.A[x]
,
set: {x:A| B[x]}
,
list: T List
,
product: x:A × B[x]
,
apply: f a
,
and: P ∧ Q
,
rel_path: rel_path(A;L;x;y)
,
less_than: a < b
,
natural_number: $n
,
length: ||as||
FDL editor aliases :
transitive-closure
Latex:
TC(R) == \mlambda{}x,y. \{L:(a:A \mtimes{} b:A \mtimes{} (R a b)) List| rel\_path(A;L;x;y) \mwedge{} 0 < ||L||\}
Date html generated:
2016_05_14-PM-03_51_06
Last ObjectModification:
2015_09_22-PM-06_01_46
Theory : relations2
Home
Index