Nuprl Lemma : transitive-reflexive-closure_wf

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (R^* ∈ A ⟶ A ⟶ ℙ)


Proof




Definitions occuring in Statement :  transitive-reflexive-closure: R^* uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transitive-reflexive-closure: R^* prop:
Lemmas referenced :  or_wf equal_wf transitive-closure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R\^{}*  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2017_01_19-PM-02_17_38
Last ObjectModification: 2017_01_14-PM-04_22_25

Theory : relations2


Home Index