Nuprl Lemma : transitive-reflexive-closure_wf
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (R^* ∈ A ⟶ A ⟶ ℙ)
Proof
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
transitive-reflexive-closure: R^*
, 
prop: ℙ
Lemmas referenced : 
or_wf, 
equal_wf, 
transitive-closure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R\^{}*  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2017_01_19-PM-02_17_38
Last ObjectModification:
2017_01_14-PM-04_22_25
Theory : relations2
Home
Index