Nuprl Lemma : transitive-reflexive-closure_transitivity
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y,z:A.  ((x R^* y) 
⇒ (y R^* z) 
⇒ (x R^* z))
Proof
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-reflexive-closure: R^*
, 
infix_ap: x f y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
Lemmas referenced : 
transitive-reflexive-closure_wf, 
iff_weakening_equal, 
equal_wf, 
transitive-closure-transitive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
sqequalRule, 
unionElimination, 
thin, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
because_Cache, 
lambdaEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
levelHypothesis, 
functionEquality, 
inrFormation
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y,z:A.    ((x  R\^{}*  y)  {}\mRightarrow{}  (y  R\^{}*  z)  {}\mRightarrow{}  (x  R\^{}*  z))
Date html generated:
2017_01_19-PM-02_17_45
Last ObjectModification:
2017_01_14-PM-04_59_10
Theory : relations2
Home
Index