Nuprl Lemma : transitive-reflexive-closure_transitivity

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y,z:A.  ((x R^* y)  (y R^* z)  (x R^* z))


Proof




Definitions occuring in Statement :  transitive-reflexive-closure: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-reflexive-closure: R^* infix_ap: y or: P ∨ Q member: t ∈ T subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q utrans: UniformlyTrans(T;x,y.E[x; y])
Lemmas referenced :  transitive-reflexive-closure_wf iff_weakening_equal equal_wf transitive-closure-transitive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis addLevel sqequalHypSubstitution sqequalRule unionElimination thin applyEquality introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality because_Cache lambdaEquality universeEquality equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination levelHypothesis functionEquality inrFormation

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y,z:A.    ((x  R\^{}*  y)  {}\mRightarrow{}  (y  R\^{}*  z)  {}\mRightarrow{}  (x  R\^{}*  z))



Date html generated: 2017_01_19-PM-02_17_45
Last ObjectModification: 2017_01_14-PM-04_59_10

Theory : relations2


Home Index