Nuprl Lemma : transitive-closure-transitive

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  UniformlyTrans(A;x,y.x TC(R) y)


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] utrans: UniformlyTrans(T;x,y.E[x; y]) implies:  Q transitive-closure: TC(R) infix_ap: y member: t ∈ T prop: subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] rel_path: rel_path(A;L;x;y) pi1: fst(t) pi2: snd(t) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A guard: {T}
Lemmas referenced :  transitive-closure_wf append_wf list_induction all_wf rel_path_wf list_wf list_ind_nil_lemma and_wf equal_wf list_ind_cons_lemma length-append decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename sqequalHypSubstitution sqequalRule setElimination thin applyEquality cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality hypothesis functionEquality universeEquality dependent_set_memberEquality productEquality lambdaEquality productElimination because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality addLevel hyp_replacement equalitySymmetry independent_pairFormation applyLambdaEquality levelHypothesis natural_numberEquality addEquality unionElimination imageElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    UniformlyTrans(A;x,y.x  TC(R)  y)



Date html generated: 2017_04_17-AM-09_25_45
Last ObjectModification: 2017_02_27-PM-05_26_20

Theory : relations2


Home Index