Nuprl Lemma : bfs-equiv_wf

[K:RngSig]. ∀[S:Type]. ∀[a,b:basic-formal-sum(K;S)].  (bfs-equiv(K;S;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced :  least-equiv_wf basic-formal-sum_wf bfs-reduce_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[a,b:basic-formal-sum(K;S)].    (bfs-equiv(K;S;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-09_45_03
Last ObjectModification: 2018_05_20-PM-10_42_18

Theory : linear!algebra


Home Index