Nuprl Lemma : bfs-equiv_wf
∀[K:RngSig]. ∀[S:Type]. ∀[a,b:basic-formal-sum(K;S)].  (bfs-equiv(K;S;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced : 
least-equiv_wf, 
basic-formal-sum_wf, 
bfs-reduce_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[a,b:basic-formal-sum(K;S)].    (bfs-equiv(K;S;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-09_45_03
Last ObjectModification:
2018_05_20-PM-10_42_18
Theory : linear!algebra
Home
Index