Nuprl Lemma : least-equiv_wf
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (least-equiv(A;R) ∈ A ⟶ A ⟶ ℙ)
Proof
Definitions occuring in Statement : 
least-equiv: least-equiv(A;R)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
least-equiv: least-equiv(A;R)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
or_wf, 
transitive-reflexive-closure_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
universeEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (least-equiv(A;R)  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2018_05_21-PM-00_51_46
Last ObjectModification:
2018_01_08-AM-01_05_41
Theory : relations2
Home
Index