Nuprl Lemma : least-equiv_wf

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (least-equiv(A;R) ∈ A ⟶ A ⟶ ℙ)


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: least-equiv: least-equiv(A;R) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  or_wf transitive-reflexive-closure_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis functionExtensionality applyEquality lambdaEquality hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (least-equiv(A;R)  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2018_05_21-PM-00_51_46
Last ObjectModification: 2018_01_08-AM-01_05_41

Theory : relations2


Home Index