Nuprl Lemma : int-vs_wf

ℤ ∈ VectorSpace(ℤ-rng)


Proof




Definitions occuring in Statement :  int-vs: vector-space: VectorSpace(K) member: t ∈ T int_ring: -rng
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B integ_dom: IntegDom{i} crng: CRng
Lemmas referenced :  one-dim-int-vs one-dim-vs_wf int_ring_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid hypothesis sqequalTransitivity computationStep sqequalHypSubstitution isectElimination thin applyEquality lambdaEquality_alt setElimination rename hypothesisEquality inhabitedIsType equalityTransitivity equalitySymmetry

Latex:
\mBbbZ{}  \mmember{}  VectorSpace(\mBbbZ{}-rng)



Date html generated: 2019_10_31-AM-06_26_44
Last ObjectModification: 2019_08_02-PM-03_59_15

Theory : linear!algebra


Home Index