Nuprl Lemma : int_ring_wf
ℤ-rng ∈ IntegDom{i}
Proof
Definitions occuring in Statement : 
int_ring: ℤ-rng, 
integ_dom: IntegDom{i}, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
integ_dom: IntegDom{i}, 
crng: CRng, 
rng: Rng, 
int_ring: ℤ-rng, 
rng_sig: RngSig, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
nequal: a ≠ b ∈ T , 
ring_p: IsRing(T;plus;zero;neg;times;one), 
bilinear: BiLinear(T;pl;tm), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
inverse: Inverse(T;op;id;inv), 
rng_car: |r|, 
pi1: fst(t), 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
rng_minus: -r, 
rng_times: *, 
rng_one: 1, 
infix_ap: x f y, 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
comm: Comm(T;op), 
integ_dom_p: IsIntegDom(r), 
true: True, 
sq_type: SQType(T), 
guard: {T}
Lemmas referenced : 
eq_int_wf, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
it_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
unit_wf2, 
equal_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
itermConstant_wf, 
int_term_value_constant_lemma, 
itermMinus_wf, 
int_term_value_minus_lemma, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
subtype_base_sq, 
true_wf, 
int_entire, 
integ_dom_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
dependent_pairEquality, 
intEquality, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
addEquality, 
natural_numberEquality, 
minusEquality, 
multiplyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
inrEquality, 
independent_pairFormation, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
inlEquality, 
divideEquality, 
dependent_functionElimination, 
functionEquality, 
unionEquality, 
productEquality, 
cumulativity, 
isect_memberFormation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
independent_pairEquality, 
setElimination, 
rename, 
addLevel, 
instantiate
Latex:
\mBbbZ{}-rng  \mmember{}  IntegDom\{i\}
Date html generated:
2017_10_01-AM-08_18_36
Last ObjectModification:
2017_02_28-PM-02_03_29
Theory : rings_1
Home
Index