Nuprl Lemma : int_entire

a,b:ℤ.  (a 0 ∈ ℤ) ∨ (b 0 ∈ ℤsupposing (a b) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a all: x:A. B[x] or: P ∨ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: decidable: Dec(P) or: P ∨ Q int_nzero: -o nequal: a ≠ b ∈  top: Top
Lemmas referenced :  equal-wf-base int_subtype_base decidable__int_equal mul_cancel_in_eq nequal_wf mul-commutes zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination inrFormation inlFormation dependent_set_memberEquality natural_numberEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    (a  =  0)  \mvee{}  (b  =  0)  supposing  (a  *  b)  =  0



Date html generated: 2019_06_20-AM-11_26_35
Last ObjectModification: 2018_09_26-AM-10_58_31

Theory : arithmetic


Home Index