Nuprl Lemma : int_entire
∀a,b:ℤ.  (a = 0 ∈ ℤ) ∨ (b = 0 ∈ ℤ) supposing (a * b) = 0 ∈ ℤ
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
top: Top
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
decidable__int_equal, 
mul_cancel_in_eq, 
nequal_wf, 
mul-commutes, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inrFormation, 
inlFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    (a  =  0)  \mvee{}  (b  =  0)  supposing  (a  *  b)  =  0
Date html generated:
2019_06_20-AM-11_26_35
Last ObjectModification:
2018_09_26-AM-10_58_31
Theory : arithmetic
Home
Index