Nuprl Lemma : vs-iso_inversion

[K:RngSig]. ∀[A,B:VectorSpace(K)].  (A ≅  B ≅ A)


Proof




Definitions occuring in Statement :  vs-iso: A ≅ B vector-space: VectorSpace(K) uall: [x:A]. B[x] implies:  Q rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q vs-iso: A ≅ B exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B all: x:A. B[x] vs-map: A ⟶ B prop:
Lemmas referenced :  vs-point_wf vs-iso_wf vector-space_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt hypothesisEquality cut hypothesis independent_pairFormation sqequalRule productIsType functionIsType universeIsType introduction extract_by_obid isectElimination equalityIstype because_Cache applyEquality setElimination rename inhabitedIsType dependent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].    (A  \mcong{}  B  {}\mRightarrow{}  B  \mcong{}  A)



Date html generated: 2019_10_31-AM-06_27_46
Last ObjectModification: 2019_08_02-PM-04_05_11

Theory : linear!algebra


Home Index