Nuprl Lemma : vs-iso_inversion
∀[K:RngSig]. ∀[A,B:VectorSpace(K)].  (A ≅ B 
⇒ B ≅ A)
Proof
Definitions occuring in Statement : 
vs-iso: A ≅ B
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
vs-iso: A ≅ B
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
vs-map: A ⟶ B
, 
prop: ℙ
Lemmas referenced : 
vs-point_wf, 
vs-iso_wf, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityIstype, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].    (A  \mcong{}  B  {}\mRightarrow{}  B  \mcong{}  A)
Date html generated:
2019_10_31-AM-06_27_46
Last ObjectModification:
2019_08_02-PM-04_05_11
Theory : linear!algebra
Home
Index