Nuprl Lemma : ps-sigma-elim-equality-rule2

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[T:{X.Σ B ⊢ _}].
[t1:{X.A.B ⊢ _:(T)SigmaUnElim}]. ∀[t2:{X.Σ B ⊢ _:T}].
  (t1)SigmaElim t2 ∈ {X.Σ B ⊢ _:T} supposing t1 (t2)SigmaUnElim ∈ {X.A.B ⊢ _:(T)SigmaUnElim}


Proof




Definitions occuring in Statement :  sigma-unelim-pscm: SigmaUnElim sigma-elim-pscm: SigmaElim presheaf-sigma: Σ B psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop: squash: T true: True presheaf-term-at: u(a)
Lemmas referenced :  pscm-ap-term_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 presheaf-sigma_wf sigma-unelim-pscm_wf presheaf-term_wf2 pscm-ap-type_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf ps-sigma-elim-rule equal_wf squash_wf true_wf istype-universe I_set_wf presheaf-term-equal ps-sigma-unelim-elim-term presheaf-term-at_wf cat-ob_wf presheaf-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalityIstype because_Cache hypothesisEquality cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination applyEquality hypothesis sqequalRule universeIsType applyLambdaEquality hyp_replacement equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed functionExtensionality independent_isectElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[T:\{X.\mSigma{}  A  B  \mvdash{}  \_\}].
\mforall{}[t1:\{X.A.B  \mvdash{}  \_:(T)SigmaUnElim\}].  \mforall{}[t2:\{X.\mSigma{}  A  B  \mvdash{}  \_:T\}].
    (t1)SigmaElim  =  t2  supposing  t1  =  (t2)SigmaUnElim



Date html generated: 2020_05_20-PM-01_33_09
Last ObjectModification: 2020_04_03-AM-11_03_16

Theory : presheaf!models!of!type!theory


Home Index