Nuprl Lemma : ps-sigma-unelim-p

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].
  (p SigmaUnElim p ∈ psc_map{[i j]:l}(C; X.A.B; X))


Proof




Definitions occuring in Statement :  sigma-unelim-pscm: SigmaUnElim presheaf-sigma: Σ B psc-fst: p psc-adjoin: X.A presheaf-type: {X ⊢ _} pscm-comp: F psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a psc-adjoin: X.A all: x:A. B[x] psc-fst: p pscm-comp: F sigma-unelim-pscm: SigmaUnElim compose: g pi1: fst(t) psc-adjoin-set: (v;u)
Lemmas referenced :  pscm-equal psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-comp_wf presheaf-sigma_wf sigma-unelim-pscm_wf psc-fst_wf psc-map-subtype I_set_pair_redex_lemma I_set_wf cat-ob_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule independent_isectElimination functionExtensionality dependent_functionElimination Error :memTop,  productElimination universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].
    (p  o  SigmaUnElim  =  p  o  p)



Date html generated: 2020_05_20-PM-01_32_57
Last ObjectModification: 2020_04_02-PM-06_45_59

Theory : presheaf!models!of!type!theory


Home Index