Nuprl Lemma : pscm-presheaf-lam
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[b:{X.A ⊢ _:(B)p}]. ∀[H:ps_context{j:l}(C)].
∀[s:psc_map{j:l}(C; H; X)].
  ((presheaf-lam(X;b))s = presheaf-lam(H;(b)s+) ∈ {H ⊢ _:((A ⟶ B))s})
Proof
Definitions occuring in Statement : 
presheaf-lam: presheaf-lam(X;b), 
presheaf-fun: (A ⟶ B), 
pscm+: tau+, 
psc-fst: p, 
psc-adjoin: X.A, 
pscm-ap-term: (t)s, 
presheaf-term: {X ⊢ _:A}, 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
psc_map: A ⟶ B, 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
presheaf-lam: presheaf-lam(X;b), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
true: True, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
presheaf-type: {X ⊢ _}, 
pscm-ap-type: (AF)s, 
psc-fst: p, 
psc-snd: q, 
pscm-comp: G o F, 
pscm-adjoin: (s;u), 
pscm-ap: (s)x, 
compose: f o g, 
pi1: fst(t)
Lemmas referenced : 
pscm-presheaf-lambda, 
pscm-ap-type_wf, 
ps_context_cumulativity2, 
psc-adjoin_wf, 
presheaf-type-cumulativity2, 
psc-fst_wf, 
presheaf-term_wf, 
squash_wf, 
true_wf, 
small-category-cumulativity-2, 
psc_map_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf, 
equal_wf, 
istype-universe, 
pscm-presheaf-pi, 
pscm-presheaf-fun, 
subtype_rel_self, 
iff_weakening_equal, 
presheaf-pi_wf, 
presheaf-fun-as-presheaf-pi
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeEquality, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:(B)p\}].
\mforall{}[H:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  H;  X)].
    ((presheaf-lam(X;b))s  =  presheaf-lam(H;(b)s+))
Date html generated:
2020_05_20-PM-01_30_26
Last ObjectModification:
2020_04_02-PM-05_56_45
Theory : presheaf!models!of!type!theory
Home
Index