Step
*
1
of Lemma
approx-fixpoint
1. I : {I:Interval| icompact(I)}
2. n : ℕ
3. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
((¬(∀x:I^n. f x ≠ r0))
⇒ (∀e:{e:ℝ| r0 < e} . ∃x:I^n. (|f x| < e)))
4. f : {f:I^n ⟶ I^n| ∀a,b:I^n. (req-vec(n;a;b)
⇒ req-vec(n;f a;f b))}
5. ¬(∀x:I^n. f x ≠ x)
6. e : {e:ℝ| r0 < e}
⊢ λx.d(f x;x) ∈ {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
BY
{ ((MemTypeCD THEN Auto)
THEN Reduce 0
THEN DVar `f'
THEN (Unhide THENA Auto)
THEN (Assert req-vec(n;f a;f b) BY
Auto)
THEN RWO "-1 -2" 0
THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. n : \mBbbN{}
3. \mforall{}f:\{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
((\mneg{}(\mforall{}x:I\^{}n. f x \mneq{} r0)) {}\mRightarrow{} (\mforall{}e:\{e:\mBbbR{}| r0 < e\} . \mexists{}x:I\^{}n. (|f x| < e)))
4. f : \{f:I\^{}n {}\mrightarrow{} I\^{}n| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} req-vec(n;f a;f b))\}
5. \mneg{}(\mforall{}x:I\^{}n. f x \mneq{} x)
6. e : \{e:\mBbbR{}| r0 < e\}
\mvdash{} \mlambda{}x.d(f x;x) \mmember{} \{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
By
Latex:
((MemTypeCD THEN Auto)
THEN Reduce 0
THEN DVar `f'
THEN (Unhide THENA Auto)
THEN (Assert req-vec(n;f a;f b) BY
Auto)
THEN RWO "-1 -2" 0
THEN Auto)
Home
Index