Nuprl Lemma : rat-cube-third_wf
∀[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].  (rat-cube-third(k;p;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rat-cube-third: rat-cube-third(k;p;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
rational-cube: ℚCube(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
rat-cube-third: rat-cube-third(k;p;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
real-vec_wf, 
rational-cube_wf, 
rat-interval-third_wf, 
int_seg_wf
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].    (rat-cube-third(k;p;c)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-06_03_45
Last ObjectModification:
2019_10_30-PM-01_32_06
Theory : real!vectors
Home
Index