Nuprl Lemma : rat-cube-third_wf

[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].  (rat-cube-third(k;p;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  rat-cube-third: rat-cube-third(k;p;c) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T rational-cube: Cube(k)
Definitions unfolded in proof :  rational-cube: Cube(k) real-vec: ^n nat: all: x:A. B[x] prop: rat-cube-third: rat-cube-third(k;p;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat real-vec_wf rational-cube_wf rat-interval-third_wf int_seg_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].    (rat-cube-third(k;p;c)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-06_03_45
Last ObjectModification: 2019_10_30-PM-01_32_06

Theory : real!vectors


Home Index