Nuprl Lemma : real-cube-boundary_wf

[n:ℕ]. ∀[a,b:ℕn ⟶ ℝ].  (real-cube-boundary(n;a;b) ∈ Type)


Proof




Definitions occuring in Statement :  real-cube-boundary: real-cube-boundary(n;a;b) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  prop: real-vec: ^n nat: and: P ∧ Q top: Top all: x:A. B[x] real-cube-boundary: real-cube-boundary(n;a;b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat real_wf rless_wf not_wf rleq_wf int_seg_wf real-vec_wf member_rooint_lemma istype-void member_rccint_lemma
Rules used in proof :  universeIsType functionIsType isectIsTypeImplies inhabitedIsType equalitySymmetry equalityTransitivity axiomEquality applyEquality because_Cache rename setElimination natural_numberEquality functionEquality productEquality hypothesisEquality isectElimination setEquality hypothesis voidElimination isect_memberEquality_alt thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].    (real-cube-boundary(n;a;b)  \mmember{}  Type)



Date html generated: 2019_11_06-PM-00_36_00
Last ObjectModification: 2019_11_05-AM-11_09_06

Theory : real!vectors


Home Index