Nuprl Lemma : real-cube-interior_wf
∀[n:ℕ]. ∀[a,b:ℕn ⟶ ℝ].  (real-cube-interior(n;a;b) ∈ Type)
Proof
Definitions occuring in Statement : 
real-cube-interior: real-cube-interior(n;a;b)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
real-vec: ℝ^n
, 
and: P ∧ Q
, 
nat: ℕ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
real-cube-interior: real-cube-interior(n;a;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
real_wf, 
rless_wf, 
int_seg_wf, 
real-vec_wf, 
istype-void, 
member_rooint_lemma
Rules used in proof : 
universeIsType, 
functionIsType, 
isectIsTypeImplies, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
productEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
hypothesisEquality, 
isectElimination, 
setEquality, 
hypothesis, 
voidElimination, 
isect_memberEquality_alt, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].    (real-cube-interior(n;a;b)  \mmember{}  Type)
Date html generated:
2019_11_06-PM-00_35_55
Last ObjectModification:
2019_11_05-AM-11_13_23
Theory : real!vectors
Home
Index