Nuprl Lemma : real-cube_wf
∀[k:ℕ]. (real-cube(k) ∈ Type)
Proof
Definitions occuring in Statement :
real-cube: real-cube(k)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
real-cube: real-cube(k)
Lemmas referenced :
real-vec_wf,
istype-nat
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
productEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[k:\mBbbN{}]. (real-cube(k) \mmember{} Type)
Date html generated:
2019_10_30-AM-11_30_58
Last ObjectModification:
2019_09_27-PM-00_41_55
Theory : real!vectors
Home
Index