Nuprl Lemma : real-unit-ball_wf
∀[n:ℕ]. (B(n) ∈ Type)
Proof
Definitions occuring in Statement : 
real-unit-ball: B(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-unit-ball: B(n)
, 
prop: ℙ
Lemmas referenced : 
real-vec_wf, 
rleq_wf, 
real-vec-norm_wf, 
int-to-real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (B(n)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-10_15_10
Last ObjectModification:
2019_06_28-PM-01_52_17
Theory : real!vectors
Home
Index