Nuprl Lemma : std-simplex_wf
∀[n:ℤ]. (Δ(n) ∈ Type)
Proof
Definitions occuring in Statement : 
std-simplex: Δ(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
std-simplex: Δ(n)
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rsum_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
setEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
productEquality, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
lambdaEquality_alt, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbZ{}].  (\mDelta{}(n)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-11_30_26
Last ObjectModification:
2019_07_31-PM-02_46_08
Theory : real!vectors
Home
Index