Nuprl Lemma : std-simplex_wf

[n:ℤ]. (n) ∈ Type)


Proof




Definitions occuring in Statement :  std-simplex: Δ(n) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  std-simplex: Δ(n) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_wf real_wf rleq_wf int-to-real_wf req_wf rsum_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality hypothesisEquality hypothesis productEquality setElimination rename productElimination applyEquality lambdaEquality_alt universeIsType axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbZ{}].  (\mDelta{}(n)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-11_30_26
Last ObjectModification: 2019_07_31-PM-02_46_08

Theory : real!vectors


Home Index