Nuprl Lemma : rsum_wf

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  {x[k] n≤k≤m} ∈ ℝ)


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  rsum: Σ{x[k] n≤k≤m} uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a and: P ∧ Q prop: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k callbyvalueall: callbyvalueall has-valueall: has-valueall(a) all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  value-type-has-value int-value-type valueall-type-has-valueall list_wf real_wf list-valueall-type real-valueall-type map_wf and_wf le_wf less_than_wf from-upto_wf evalall-reduce valueall-type-real-list radd-list_wf-bag list-subtype-bag subtype_rel_self int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache setEquality addEquality natural_numberEquality lambdaEquality applyEquality productEquality lambdaFormation setElimination rename dependent_set_memberEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-07_41_37
Last ObjectModification: 2015_12_28-AM-00_59_22

Theory : reals


Home Index