Nuprl Lemma : rsum_wf
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].  (Σ{x[k] | n≤k≤m} ∈ ℝ)
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
rsum: Σ{x[k] | n≤k≤m}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
valueall-type-has-valueall, 
list_wf, 
real_wf, 
list-valueall-type, 
real-valueall-type, 
map_wf, 
and_wf, 
le_wf, 
less_than_wf, 
from-upto_wf, 
evalall-reduce, 
valueall-type-real-list, 
radd-list_wf-bag, 
list-subtype-bag, 
subtype_rel_self, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
setEquality, 
addEquality, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
productEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-07_41_37
Last ObjectModification:
2015_12_28-AM-00_59_22
Theory : reals
Home
Index