Nuprl Lemma : Cauchy-Schwarz-equality2

n:ℕ. ∀x,y:ℝ^n.  (|x⋅y| < (||x|| ||y||)) ⇐⇒ (r0 < ||y||)  (∃t:ℝreq-vec(n;x;t*y)))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n rless: x < y rabs: |x| rmul: b int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: not: ¬A false: False rev_implies:  Q exists: x:A. B[x] guard: {T} uimplies: supposing a less_than': less_than'(a;b) le: A ≤ B nat: or: P ∨ Q rneq: x ≠ y stable: Stable{P} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T less_than: a < b ge: i ≥  nat_plus: + sq_exists: x:A [B[x]] rless: x < y req_int_terms: t1 ≡ t2

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (\mneg{}(|x\mcdot{}y|  <  (||x||  *  ||y||))  \mLeftarrow{}{}\mRightarrow{}  (r0  <  ||y||)  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  req-vec(n;x;t*y)))



Date html generated: 2020_05_20-PM-00_41_30
Last ObjectModification: 2020_01_06-PM-00_16_20

Theory : reals


Home Index