Step * of Lemma I-norm-bound

No Annotations
[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝx ∈ I}  ⟶ ℝ].
  ∀[x:{r:ℝr ∈ I} ]. (|f[x]| ≤ ||f[x]||_x:I) supposing ∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y]))
BY
(Auto THEN Unfold `I-norm` THEN InstLemma `rleq-range_sup` [⌜I⌝;⌜λ2x.|f[x]|⌝;⌜x⌝]⋅ THEN Auto) }


Latex:


Latex:
No  Annotations
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}].
    \mforall{}[x:\{r:\mBbbR{}|  r  \mmember{}  I\}  ].  (|f[x]|  \mleq{}  ||f[x]||\_x:I) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))


By


Latex:
(Auto  THEN  Unfold  `I-norm`  0  THEN  InstLemma  `rleq-range\_sup`  [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.|f[x]|\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index