Nuprl Lemma : I-norm_functionality_wrt_subinterval

[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝx ∈ I}  ⟶ ℝ].
  ∀[J:{J:Interval| icompact(J)} ]. ||f[x]||_x:J ≤ ||f[x]||_x:I supposing J ⊆ I  
  supposing ∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y]))


Proof




Definitions occuring in Statement :  I-norm: ||f[x]||_x:I subinterval: I ⊆  icompact: icompact(I) i-member: r ∈ I interval: Interval rleq: x ≤ y req: y real: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q subinterval: I ⊆  prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q guard: {T}

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}].
    \mforall{}[J:\{J:Interval|  icompact(J)\}  ].  ||f[x]||\_x:J  \mleq{}  ||f[x]||\_x:I  supposing  J  \msubseteq{}  I   
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))



Date html generated: 2020_05_20-PM-00_20_56
Last ObjectModification: 2020_01_03-PM-02_46_22

Theory : reals


Home Index