Step
*
1
of Lemma
IVT-from-connected
.....antecedent.....
1. ∀u,v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
2. u : ℝ
3. ∀v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
4. v : ℝ
5. ∀[A,B:{x:ℝ| x ∈ [u, v]} ⟶ ℙ].
((∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (A[y]
⇒ A[x]))
⇒ (∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (B[y]
⇒ B[x]))
⇒ (∃a:{x:ℝ| x ∈ [u, v]} . A[a])
⇒ (∃b:{x:ℝ| x ∈ [u, v]} . B[b])
⇒ (∀r:{x:ℝ| x ∈ [u, v]} . (A[r] ∨ B[r]))
⇒ (∃r:{x:ℝ| x ∈ [u, v]} . (A[r] ∧ B[r])))
6. f : [u, v] ⟶ℝ
7. u ≤ v
8. ∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : {e:ℝ| r0 < e}
⊢ ∃a:{x:ℝ| x ∈ [u, v]} . (f(a) < e)
BY
{ (D 0 With ⌜u⌝ THEN Auto THEN DVar `e' THEN Unhide THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. \mforall{}u,v:\mBbbR{}. Connected(\{x:\mBbbR{}| x \mmember{} [u, v]\} )
2. u : \mBbbR{}
3. \mforall{}v:\mBbbR{}. Connected(\{x:\mBbbR{}| x \mmember{} [u, v]\} )
4. v : \mBbbR{}
5. \mforall{}[A,B:\{x:\mBbbR{}| x \mmember{} [u, v]\} {}\mrightarrow{} \mBbbP{}].
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} [u, v]\} . \mforall{}y:\{y:\{x:\mBbbR{}| x \mmember{} [u, v]\} | x = y\} . (A[y] {}\mRightarrow{} A[x]))
{}\mRightarrow{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} [u, v]\} . \mforall{}y:\{y:\{x:\mBbbR{}| x \mmember{} [u, v]\} | x = y\} . (B[y] {}\mRightarrow{} B[x]))
{}\mRightarrow{} (\mexists{}a:\{x:\mBbbR{}| x \mmember{} [u, v]\} . A[a])
{}\mRightarrow{} (\mexists{}b:\{x:\mBbbR{}| x \mmember{} [u, v]\} . B[b])
{}\mRightarrow{} (\mforall{}r:\{x:\mBbbR{}| x \mmember{} [u, v]\} . (A[r] \mvee{} B[r]))
{}\mRightarrow{} (\mexists{}r:\{x:\mBbbR{}| x \mmember{} [u, v]\} . (A[r] \mwedge{} B[r])))
6. f : [u, v] {}\mrightarrow{}\mBbbR{}
7. u \mleq{} v
8. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [u, v]\} . ((x = y) {}\mRightarrow{} (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : \{e:\mBbbR{}| r0 < e\}
\mvdash{} \mexists{}a:\{x:\mBbbR{}| x \mmember{} [u, v]\} . (f(a) < e)
By
Latex:
(D 0 With \mkleeneopen{}u\mkleeneclose{} THEN Auto THEN DVar `e' THEN Unhide THEN Auto)
Home
Index