Step
*
1
2
2
1
of Lemma
Taylor-series-converges
1. a : ℝ
2. t : {t:ℝ| r0 < t}
3. F : ℕ ⟶ (a - t, a + t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} . ((x = y)
⇒ (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
7. m : ℕ+
8. [%4] : icompact(i-approx((a - t, a + t);m))
9. icompact(i-approx((a - t, a + t);m + 1)) ∧ iproper(i-approx((a - t, a + t);m + 1))
10. ∀k@0:ℕ+
∃N:ℕ+
∀x:{x:ℝ| x ∈ i-approx((a - t, a + t);m + 1)} . ∀k:{N...}.
(|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
11. ∀x:ℝ. ((x ∈ i-approx((a - t, a + t);m))
⇒ (x ∈ i-approx((a - t, a + t);m + 1)))
⊢ ∀k@0:ℕ+
∃N:ℕ+
∀x:{x:ℝ| x ∈ i-approx((a - t, a + t);m)} . ∀k:{N...}.
(|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
BY
{ (RepUR ``i-approx`` -2 THEN RepUR ``i-approx`` -1 THEN RepUR ``i-approx`` 0) }
1
1. a : ℝ
2. t : {t:ℝ| r0 < t}
3. F : ℕ ⟶ (a - t, a + t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} . ((x = y)
⇒ (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
7. m : ℕ+
8. [%4] : icompact(i-approx((a - t, a + t);m))
9. icompact(i-approx((a - t, a + t);m + 1)) ∧ iproper(i-approx((a - t, a + t);m + 1))
10. ∀k@0:ℕ+
∃N:ℕ+
∀x:{x:ℝ| (((a - t) + (r1/r(m + 1))) ≤ x) ∧ (x ≤ ((a + t) - (r1/r(m + 1))))} . ∀k:{N...}.
(|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
11. ∀x:ℝ
(((((a - t) + (r1/r(m))) ≤ x) ∧ (x ≤ ((a + t) - (r1/r(m)))))
⇒ ((((a - t) + (r1/r(m + 1))) ≤ x) ∧ (x ≤ ((a + t) - (r1/r(m + 1))))))
⊢ ∀k@0:ℕ+
∃N:ℕ+
∀x:{x:ℝ| (((a - t) + (r1/r(m))) ≤ x) ∧ (x ≤ ((a + t) - (r1/r(m))))} . ∀k:{N...}.
(|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
Latex:
Latex:
1. a : \mBbbR{}
2. t : \{t:\mBbbR{}| r0 < t\}
3. F : \mBbbN{} {}\mrightarrow{} (a - t, a + t) {}\mrightarrow{}\mBbbR{}
4. \mforall{}k:\mBbbN{}. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} (a - t, a + t)\} . ((x = y) {}\mRightarrow{} (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. \mforall{}r:\{r:\mBbbR{}| (r0 \mleq{} r) \mwedge{} (r < t)\} . lim k\mrightarrow{}\minfty{}.r\^{}k * (F[k + 1;x]/r((k)!)) = \mlambda{}x.r0 for x \mmember{} (a - t, a + t)
7. m : \mBbbN{}\msupplus{}
8. [\%4] : icompact(i-approx((a - t, a + t);m))
9. icompact(i-approx((a - t, a + t);m + 1)) \mwedge{} iproper(i-approx((a - t, a + t);m + 1))
10. \mforall{}k@0:\mBbbN{}\msupplus{}
\mexists{}N:\mBbbN{}\msupplus{}
\mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx((a - t, a + t);m + 1)\} . \mforall{}k:\{N...\}.
(|\mSigma{}\{(F[i;a]/r((i)!)) * x - a\^{}i | 0\mleq{}i\mleq{}k\} - F[0;x]| \mleq{} (r1/r(k@0)))
11. \mforall{}x:\mBbbR{}. ((x \mmember{} i-approx((a - t, a + t);m)) {}\mRightarrow{} (x \mmember{} i-approx((a - t, a + t);m + 1)))
\mvdash{} \mforall{}k@0:\mBbbN{}\msupplus{}
\mexists{}N:\mBbbN{}\msupplus{}
\mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx((a - t, a + t);m)\} . \mforall{}k:\{N...\}.
(|\mSigma{}\{(F[i;a]/r((i)!)) * x - a\^{}i | 0\mleq{}i\mleq{}k\} - F[0;x]| \mleq{} (r1/r(k@0)))
By
Latex:
(RepUR ``i-approx`` -2 THEN RepUR ``i-approx`` -1 THEN RepUR ``i-approx`` 0)
Home
Index