Nuprl Lemma : accelerate-req
∀[k:ℕ+]. ∀[x:ℝ].  ((accelerate(k;x) ∈ ℝ) ∧ (accelerate(k;x) = x))
Proof
Definitions occuring in Statement : 
req: x = y
, 
accelerate: accelerate(k;f)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
Lemmas referenced : 
accelerate_wf, 
subtype_rel_sets, 
nat_plus_wf, 
regular-int-seq_wf, 
real-regular, 
sq_stable__regular-int-seq, 
req_witness, 
real_wf, 
accelerate-bdd-diff, 
req-iff-bdd-diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
functionEquality, 
hypothesis, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
functionExtensionality, 
setElimination, 
rename, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
dependent_functionElimination
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].    ((accelerate(k;x)  \mmember{}  \mBbbR{})  \mwedge{}  (accelerate(k;x)  =  x))
Date html generated:
2017_10_02-PM-07_15_13
Last ObjectModification:
2017_09_20-PM-05_36_38
Theory : reals
Home
Index