Nuprl Lemma : accelerate-req

[k:ℕ+]. ∀[x:ℝ].  ((accelerate(k;x) ∈ ℝ) ∧ (accelerate(k;x) x))


Proof




Definitions occuring in Statement :  req: y accelerate: accelerate(k;f) real: nat_plus: + uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B real: so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + uimplies: supposing a prop: all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T uiff: uiff(P;Q)
Lemmas referenced :  accelerate_wf subtype_rel_sets nat_plus_wf regular-int-seq_wf real-regular sq_stable__regular-int-seq req_witness real_wf accelerate-bdd-diff req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule functionEquality hypothesis intEquality because_Cache lambdaEquality natural_numberEquality functionExtensionality setElimination rename independent_isectElimination setEquality lambdaFormation dependent_set_memberEquality independent_pairFormation independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependent_functionElimination

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].    ((accelerate(k;x)  \mmember{}  \mBbbR{})  \mwedge{}  (accelerate(k;x)  =  x))



Date html generated: 2017_10_02-PM-07_15_13
Last ObjectModification: 2017_09_20-PM-05_36_38

Theory : reals


Home Index