Nuprl Lemma : adjacent-partition-points
∀[I:Interval]
  ∀[p:partition(I)]
    (((¬0 < ||p||) 
⇒ r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;p))
    ∧ (0 < ||p||
      
⇒ (r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
         ∧ (∀i:ℕ||p|| - 1. r0≤p[i + 1] - p[i]≤partition-mesh(I;p))
         ∧ r0≤right-endpoint(I) - last(p)≤partition-mesh(I;p)))) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
rbetween: x≤y≤z
, 
rsub: x - y
, 
int-to-real: r(n)
, 
last: last(L)
, 
select: L[n]
, 
length: ||as||
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
partition-mesh: partition-mesh(I;p)
, 
all: ∀x:A. B[x]
, 
full-partition: full-partition(I;p)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
partition: partition(I)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
rbetween: x≤y≤z
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
icompact: icompact(I)
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
guard: {T}
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
ge: i ≥ j 
, 
true: True
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda3, 
append: as @ bs
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
real: ℝ
, 
int_iseg: {i...j}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
last: last(L)
Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)]
        (((\mneg{}0  <  ||p||)  {}\mRightarrow{}  r0\mleq{}right-endpoint(I)  -  left-endpoint(I)\mleq{}partition-mesh(I;p))
        \mwedge{}  (0  <  ||p||
            {}\mRightarrow{}  (r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||p||  -  1.  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p))
                  \mwedge{}  r0\mleq{}right-endpoint(I)  -  last(p)\mleq{}partition-mesh(I;p)))) 
    supposing  icompact(I)
Date html generated:
2020_05_20-AM-11_37_20
Last ObjectModification:
2020_01_02-PM-01_30_05
Theory : reals
Home
Index