Step
*
of Lemma
approx-arg_wf
∀f,f':(-∞, ∞) ⟶ℝ.
((∀x,y:ℝ. ((x = y)
⇒ (f'[x] = f'[y])))
⇒ d(f[x])/dx = λx.f'[x] on (-∞, ∞)
⇒ (∀B:ℕ. ((∀x:ℝ. (|f'[x]| ≤ r(B)))
⇒ (∀x:ℝ. (approx-arg(f;B;x) ∈ {y:ℝ| y = (f x)} )))))
BY
{ ((InstLemma `mean-value-for-bounded-derivative` [(-∞, ∞)]⋅ THENA Auto)
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN Auto
THEN ((D -4 With ⌜r(B)⌝ THENM D -1) THENA Auto)
THEN Unfold `approx-arg` 0
THEN Assert ⌜1 + B-regular-seq(λn.eval a = x n in
eval m = 2 * n in
f (r(a))/m n)⌝⋅) }
1
.....assertion.....
1. f : (-∞, ∞) ⟶ℝ
2. f' : (-∞, ∞) ⟶ℝ
3. ∀x,y:ℝ. ((x = y)
⇒ (f'[x] = f'[y]))
4. d(f[x])/dx = λx.f'[x] on (-∞, ∞)
5. B : ℕ
6. ∀x:ℝ. (|f'[x]| ≤ r(B))
7. x : ℝ
8. ∀x,y:{x:ℝ| x ∈ (-∞, ∞)} . (|f[x] - f[y]| ≤ (r(B) * |x - y|))
⊢ 1 + B-regular-seq(λn.eval a = x n in
eval m = 2 * n in
f (r(a))/m n)
2
1. f : (-∞, ∞) ⟶ℝ
2. f' : (-∞, ∞) ⟶ℝ
3. ∀x,y:ℝ. ((x = y)
⇒ (f'[x] = f'[y]))
4. d(f[x])/dx = λx.f'[x] on (-∞, ∞)
5. B : ℕ
6. ∀x:ℝ. (|f'[x]| ≤ r(B))
7. x : ℝ
8. ∀x,y:{x:ℝ| x ∈ (-∞, ∞)} . (|f[x] - f[y]| ≤ (r(B) * |x - y|))
9. 1 + B-regular-seq(λn.eval a = x n in
eval m = 2 * n in
f (r(a))/m n)
⊢ accelerate(1 + B;λn.eval a = x n in
eval m = 2 * n in
f (r(a))/m n) ∈ {y:ℝ| y = (f x)}
Latex:
Latex:
\mforall{}f,f':(-\minfty{}, \minfty{}) {}\mrightarrow{}\mBbbR{}.
((\mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (f'[x] = f'[y])))
{}\mRightarrow{} d(f[x])/dx = \mlambda{}x.f'[x] on (-\minfty{}, \minfty{})
{}\mRightarrow{} (\mforall{}B:\mBbbN{}. ((\mforall{}x:\mBbbR{}. (|f'[x]| \mleq{} r(B))) {}\mRightarrow{} (\mforall{}x:\mBbbR{}. (approx-arg(f;B;x) \mmember{} \{y:\mBbbR{}| y = (f x)\} )))))
By
Latex:
((InstLemma `mean-value-for-bounded-derivative` [(-\minfty{}, \minfty{})]\mcdot{} THENA Auto)
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN Auto
THEN ((D -4 With \mkleeneopen{}r(B)\mkleeneclose{} THENM D -1) THENA Auto)
THEN Unfold `approx-arg` 0
THEN Assert \mkleeneopen{}1 + B-regular-seq(\mlambda{}n.eval a = x n in
eval m = 2 * n in
f (r(a))/m n)\mkleeneclose{}\mcdot{})
Home
Index