Nuprl Lemma : between-rmin-rmax
∀[x,y,t:ℝ].  uiff((rmin(x;y) ≤ t) ∧ (t ≤ rmax(x;y));(|t - x| ≤ |y - x|) ∧ (|t - y| ≤ |y - x|))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
rsub: x - y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
req_int_terms: t1 ≡ t2
Latex:
\mforall{}[x,y,t:\mBbbR{}].    uiff((rmin(x;y)  \mleq{}  t)  \mwedge{}  (t  \mleq{}  rmax(x;y));(|t  -  x|  \mleq{}  |y  -  x|)  \mwedge{}  (|t  -  y|  \mleq{}  |y  -  x|))
Date html generated:
2020_05_20-AM-11_35_41
Last ObjectModification:
2019_12_20-PM-00_38_35
Theory : reals
Home
Index