Nuprl Lemma : between-rmin-rmax

[x,y,t:ℝ].  uiff((rmin(x;y) ≤ t) ∧ (t ≤ rmax(x;y));(|t x| ≤ |y x|) ∧ (|t y| ≤ |y x|))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rmin: rmin(x;y) rmax: rmax(x;y) rsub: y real: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B squash: T or: P ∨ Q guard: {T} rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q not: ¬A false: False stable: Stable{P} req_int_terms: t1 ≡ t2

Latex:
\mforall{}[x,y,t:\mBbbR{}].    uiff((rmin(x;y)  \mleq{}  t)  \mwedge{}  (t  \mleq{}  rmax(x;y));(|t  -  x|  \mleq{}  |y  -  x|)  \mwedge{}  (|t  -  y|  \mleq{}  |y  -  x|))



Date html generated: 2020_05_20-AM-11_35_41
Last ObjectModification: 2019_12_20-PM-00_38_35

Theory : reals


Home Index