Step
*
2
2
1
1
of Lemma
cantor-interval-cauchy
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : ℕ ⟶ 𝔹
5. k : ℕ+
6. ∀[n:ℕ]. ∀[m:{n...}].
(((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;m))))
∧ ((fst(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;m))))
∧ ((snd(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;n)))))
7. ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹]. (((snd(cantor-interval(a;b;f;n))) - fst(cantor-interval(a;b;f;n))) = (2^n * b - a)/3^n)
8. N : ℕ
9. ∀n:ℕ. ((N ≤ n)
⇒ ((2^n * b - a)/3^n ≤ (r1/r(k))))
10. n : ℕ
11. m : ℕ
12. N ≤ n
13. N ≤ m
14. (2^n * b - a)/3^n ≤ (r1/r(k))
15. ¬(n ≤ m)
16. ((fst(cantor-interval(a;b;f;m))) ≤ (fst(cantor-interval(a;b;f;n))))
∧ ((fst(cantor-interval(a;b;f;n))) ≤ (snd(cantor-interval(a;b;f;n))))
∧ ((snd(cantor-interval(a;b;f;n))) ≤ (snd(cantor-interval(a;b;f;m))))
17. ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) = (2^m * b - a)/3^m
18. (2^m * b - a)/3^m ≤ (r1/r(k))
⊢ |(fst(cantor-interval(a;b;f;n))) - fst(cantor-interval(a;b;f;m))| ≤ (r1/r(k))
BY
{ ((Assert ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) ≤ (r1/r(k)) BY
Auto)
THEN (RWO "-1<" 0 THENA Auto)
THEN MoveToConcl (-4)
THEN GenConclTerms Auto [⌜cantor-interval(a;b;f;n)⌝;⌜cantor-interval(a;b;f;m)⌝]⋅
THEN D -4
THEN D -2
THEN Reduce 0
THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : ℕ ⟶ 𝔹
5. k : ℕ+
6. ∀[n:ℕ]. ∀[m:{n...}].
(((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;m))))
∧ ((fst(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;m))))
∧ ((snd(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;n)))))
7. ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹]. (((snd(cantor-interval(a;b;f;n))) - fst(cantor-interval(a;b;f;n))) = (2^n * b - a)/3^n)
8. N : ℕ
9. ∀n:ℕ. ((N ≤ n)
⇒ ((2^n * b - a)/3^n ≤ (r1/r(k))))
10. n : ℕ
11. m : ℕ
12. N ≤ n
13. N ≤ m
14. (2^n * b - a)/3^n ≤ (r1/r(k))
15. ¬(n ≤ m)
16. ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) = (2^m * b - a)/3^m
17. (2^m * b - a)/3^m ≤ (r1/r(k))
18. ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) ≤ (r1/r(k))
19. v2 : ℝ
20. v3 : ℝ
21. cantor-interval(a;b;f;n) = <v2, v3> ∈ (ℝ × ℝ)
22. v4 : ℝ
23. v5 : ℝ
24. cantor-interval(a;b;f;m) = <v4, v5> ∈ (ℝ × ℝ)
25. v4 ≤ v2
26. v2 ≤ v3
27. v3 ≤ v5
⊢ |v2 - v4| ≤ (v5 - v4)
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} b
4. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}
5. k : \mBbbN{}\msupplus{}
6. \mforall{}[n:\mBbbN{}]. \mforall{}[m:\{n...\}].
(((fst(cantor-interval(a;b;f;n))) \mleq{} (fst(cantor-interval(a;b;f;m))))
\mwedge{} ((fst(cantor-interval(a;b;f;m))) \mleq{} (snd(cantor-interval(a;b;f;m))))
\mwedge{} ((snd(cantor-interval(a;b;f;m))) \mleq{} (snd(cantor-interval(a;b;f;n)))))
7. \mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbB{}].
(((snd(cantor-interval(a;b;f;n))) - fst(cantor-interval(a;b;f;n))) = (2\^{}n * b - a)/3\^{}n)
8. N : \mBbbN{}
9. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} ((2\^{}n * b - a)/3\^{}n \mleq{} (r1/r(k))))
10. n : \mBbbN{}
11. m : \mBbbN{}
12. N \mleq{} n
13. N \mleq{} m
14. (2\^{}n * b - a)/3\^{}n \mleq{} (r1/r(k))
15. \mneg{}(n \mleq{} m)
16. ((fst(cantor-interval(a;b;f;m))) \mleq{} (fst(cantor-interval(a;b;f;n))))
\mwedge{} ((fst(cantor-interval(a;b;f;n))) \mleq{} (snd(cantor-interval(a;b;f;n))))
\mwedge{} ((snd(cantor-interval(a;b;f;n))) \mleq{} (snd(cantor-interval(a;b;f;m))))
17. ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) = (2\^{}m * b - a)/3\^{}m
18. (2\^{}m * b - a)/3\^{}m \mleq{} (r1/r(k))
\mvdash{} |(fst(cantor-interval(a;b;f;n))) - fst(cantor-interval(a;b;f;m))| \mleq{} (r1/r(k))
By
Latex:
((Assert ((snd(cantor-interval(a;b;f;m))) - fst(cantor-interval(a;b;f;m))) \mleq{} (r1/r(k)) BY
Auto)
THEN (RWO "-1<" 0 THENA Auto)
THEN MoveToConcl (-4)
THEN GenConclTerms Auto [\mkleeneopen{}cantor-interval(a;b;f;n)\mkleeneclose{};\mkleeneopen{}cantor-interval(a;b;f;m)\mkleeneclose{}]\mcdot{}
THEN D -4
THEN D -2
THEN Reduce 0
THEN Auto)
Home
Index