Step
*
1
of Lemma
cantor-interval-req
.....basecase.....
1. a : ℝ
2. b : ℝ
3. f : ℕ ⟶ 𝔹
4. n : ℤ
⊢ ((fst(cantor-interval(a;b;f;0))) = (fst(cantor_ivl(a;b;f;0))))
∧ ((snd(cantor-interval(a;b;f;0))) = (snd(cantor_ivl(a;b;f;0))))
BY
{ (D 0
THEN RepUR ``cantor-interval cantor_ivl unit-interval-fan`` 0
THEN (Subst' 3^0 ~ 1 0 THENA Auto)
THEN Reduce 0
THEN (RWO "int-rdiv-req" 0 THEN Auto)
THEN (RWO "int-rmul-req" 0 THENA Auto)
THEN Auto
THEN nRNorm 0
THEN Auto) }
Latex:
Latex:
.....basecase.....
1. a : \mBbbR{}
2. b : \mBbbR{}
3. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}
4. n : \mBbbZ{}
\mvdash{} ((fst(cantor-interval(a;b;f;0))) = (fst(cantor\_ivl(a;b;f;0))))
\mwedge{} ((snd(cantor-interval(a;b;f;0))) = (snd(cantor\_ivl(a;b;f;0))))
By
Latex:
(D 0
THEN RepUR ``cantor-interval cantor\_ivl unit-interval-fan`` 0
THEN (Subst' 3\^{}0 \msim{} 1 0 THENA Auto)
THEN Reduce 0
THEN (RWO "int-rdiv-req" 0 THEN Auto)
THEN (RWO "int-rmul-req" 0 THENA Auto)
THEN Auto
THEN nRNorm 0
THEN Auto)
Home
Index