Step
*
of Lemma
cantor-lemma2
∀z:ℕ ⟶ ℝ
∃f:ℕ ⟶ {p:ℝ × ℝ| (fst(p)) < (snd(p))} ⟶ {p:ℝ × ℝ| (fst(p)) < (snd(p))}
∀n:ℕ. ∀p:{p:ℝ × ℝ| (fst(p)) < (snd(p))} .
let x,y = p
in let x',y' = f n p
in (x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ (((z n) < x') ∨ (y' < (z n))) ∧ ((y' - x') < (r1/r(n + 1)))
BY
{ (Auto
THEN InstLemma `cantor-lemma` []
THEN RenameVar `g' (-1)
THEN Unfold `all` (-1)
THEN Unfold `exists` (-1)
THEN (InstConcl [⌜λn,p. let x,y = p in let x',y',pf = g x y (r1/r(n + 1)) (z n) in <x', y'>⌝]⋅ THENA Auto)) }
1
1. z : ℕ ⟶ ℝ
2. g : x:ℝ
⟶ y:ℝ
⟶ e:ℝ
⟶ z:ℝ
⟶ (x':ℝ × y':ℝ × ((x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ ((z < x') ∨ (y' < z)) ∧ ((y' - x') < e))) supposing
((x < y) and
(r0 < e))
⊢ ∀n:ℕ. ∀p:{p:ℝ × ℝ| (fst(p)) < (snd(p))} .
let x,y = p
in let x',y' = (λn,p. let x,y = p in let x',y',pf = g x y (r1/r(n + 1)) (z n) in <x', y'>) n p
in (x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ (((z n) < x') ∨ (y' < (z n))) ∧ ((y' - x') < (r1/r(n + 1)))
Latex:
Latex:
\mforall{}z:\mBbbN{} {}\mrightarrow{} \mBbbR{}
\mexists{}f:\mBbbN{} {}\mrightarrow{} \{p:\mBbbR{} \mtimes{} \mBbbR{}| (fst(p)) < (snd(p))\} {}\mrightarrow{} \{p:\mBbbR{} \mtimes{} \mBbbR{}| (fst(p)) < (snd(p))\}
\mforall{}n:\mBbbN{}. \mforall{}p:\{p:\mBbbR{} \mtimes{} \mBbbR{}| (fst(p)) < (snd(p))\} .
let x,y = p
in let x',y' = f n p
in (x \mleq{} x')
\mwedge{} (x' < y')
\mwedge{} (y' \mleq{} y)
\mwedge{} (((z n) < x') \mvee{} (y' < (z n)))
\mwedge{} ((y' - x') < (r1/r(n + 1)))
By
Latex:
(Auto
THEN InstLemma `cantor-lemma` []
THEN RenameVar `g' (-1)
THEN Unfold `all` (-1)
THEN Unfold `exists` (-1)
THEN (InstConcl [\mkleeneopen{}\mlambda{}n,p. let x,y = p in let x',y',pf = g x y (r1/r(n + 1)) (z n) in <x', y'>\mkleeneclose{}]\mcdot{} THEN\000CA Auto))
Home
Index