Nuprl Lemma : case-real2_wf2

[d,a,b:ℝ]. ∀[f:a ≠ b ⟶ ((↓r0 < d) ∨ (↓¬(r0 < d)))].
  (case-real2(a;b;f) ∈ {z:ℝ((r0 < d)  (z a)) ∧ ((d ≤ r0)  (z b))} )


Proof




Definitions occuring in Statement :  case-real2: case-real2(a;b;f) rneq: x ≠ y rleq: x ≤ y rless: x < y req: y int-to-real: r(n) real: uall: [x:A]. B[x] not: ¬A squash: T implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B implies:  Q not: ¬A all: x:A. B[x] guard: {T} uimplies: supposing a false: False prop: or: P ∨ Q
Lemmas referenced :  case-real2_wf rless_wf int-to-real_wf rless_transitivity1 rless_irreflexivity rleq_wf req_wf rneq_wf squash_wf not_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality_alt setElimination rename productElimination dependent_set_memberEquality_alt independent_pairFormation lambdaFormation_alt independent_functionElimination dependent_functionElimination because_Cache independent_isectElimination voidElimination universeIsType sqequalRule productIsType functionIsType inhabitedIsType unionIsType

Latex:
\mforall{}[d,a,b:\mBbbR{}].  \mforall{}[f:a  \mneq{}  b  {}\mrightarrow{}  ((\mdownarrow{}r0  <  d)  \mvee{}  (\mdownarrow{}\mneg{}(r0  <  d)))].
    (case-real2(a;b;f)  \mmember{}  \{z:\mBbbR{}|  ((r0  <  d)  {}\mRightarrow{}  (z  =  a))  \mwedge{}  ((d  \mleq{}  r0)  {}\mRightarrow{}  (z  =  b))\}  )



Date html generated: 2019_10_29-AM-09_37_07
Last ObjectModification: 2019_05_23-PM-05_57_53

Theory : reals


Home Index