Nuprl Lemma : case-real2_wf2
∀[d,a,b:ℝ]. ∀[f:a ≠ b ⟶ ((↓r0 < d) ∨ (↓¬(r0 < d)))].
  (case-real2(a;b;f) ∈ {z:ℝ| ((r0 < d) 
⇒ (z = a)) ∧ ((d ≤ r0) 
⇒ (z = b))} )
Proof
Definitions occuring in Statement : 
case-real2: case-real2(a;b;f)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
or: P ∨ Q
Lemmas referenced : 
case-real2_wf, 
rless_wf, 
int-to-real_wf, 
rless_transitivity1, 
rless_irreflexivity, 
rleq_wf, 
req_wf, 
rneq_wf, 
squash_wf, 
not_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
voidElimination, 
universeIsType, 
sqequalRule, 
productIsType, 
functionIsType, 
inhabitedIsType, 
unionIsType
Latex:
\mforall{}[d,a,b:\mBbbR{}].  \mforall{}[f:a  \mneq{}  b  {}\mrightarrow{}  ((\mdownarrow{}r0  <  d)  \mvee{}  (\mdownarrow{}\mneg{}(r0  <  d)))].
    (case-real2(a;b;f)  \mmember{}  \{z:\mBbbR{}|  ((r0  <  d)  {}\mRightarrow{}  (z  =  a))  \mwedge{}  ((d  \mleq{}  r0)  {}\mRightarrow{}  (z  =  b))\}  )
Date html generated:
2019_10_29-AM-09_37_07
Last ObjectModification:
2019_05_23-PM-05_57_53
Theory : reals
Home
Index