Step
*
1
1
of Lemma
cauchy-limit_wf
1. x : ℕ ⟶ ℝ
2. c : cauchy(n.x[n])
3. (λconverges.let y,c = converges
in λk.(c (2 * k)))
= (λconverges.let y,c = converges
in λk.(c (2 * k)))
∈ (x[n]↓ as n→∞ ⟶ cauchy(n.x[n]))
4. λcauchy.<accelerate(2;λn.(x (cauchy n) n)), λk.((cauchy (4 * k)) + 1)> ∈ cauchy(n.x[n]) ⟶ x[n]↓ as n→∞
⊢ accelerate(2;λn.(x (c n) n)) ∈ ℝ
BY
{ (Subst' accelerate(2;λn.(x (c n) n)) ~ fst(((λcauchy.<accelerate(2;λn.(x (cauchy n) n)), λk.((cauchy (4 * k)) + 1)>)
c)) 0
THENA (Reduce 0 THEN Auto)
) }
1
1. x : ℕ ⟶ ℝ
2. c : cauchy(n.x[n])
3. (λconverges.let y,c = converges
in λk.(c (2 * k)))
= (λconverges.let y,c = converges
in λk.(c (2 * k)))
∈ (x[n]↓ as n→∞ ⟶ cauchy(n.x[n]))
4. λcauchy.<accelerate(2;λn.(x (cauchy n) n)), λk.((cauchy (4 * k)) + 1)> ∈ cauchy(n.x[n]) ⟶ x[n]↓ as n→∞
⊢ fst(((λcauchy.<accelerate(2;λn.(x (cauchy n) n)), λk.((cauchy (4 * k)) + 1)>) c)) ∈ ℝ
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. c : cauchy(n.x[n])
3. (\mlambda{}converges.let y,c = converges
in \mlambda{}k.(c (2 * k)))
= (\mlambda{}converges.let y,c = converges
in \mlambda{}k.(c (2 * k)))
4. \mlambda{}cauchy.<accelerate(2;\mlambda{}n.(x (cauchy n) n)), \mlambda{}k.((cauchy (4 * k)) + 1)> \mmember{} cauchy(n.x[n])
{}\mrightarrow{} x[n]\mdownarrow{} as n\mrightarrow{}\minfty{}
\mvdash{} accelerate(2;\mlambda{}n.(x (c n) n)) \mmember{} \mBbbR{}
By
Latex:
(Subst' accelerate(2;\mlambda{}n.(x (c n) n)) \msim{} fst(((\mlambda{}cauchy.<accelerate(2;\mlambda{}n.(x (cauchy n) n))
, \mlambda{}k.((cauchy (4 * k)) + 1)
>)
c)) 0
THENA (Reduce 0 THEN Auto)
)
Home
Index