Step
*
2
1
1
2
1
1
of Lemma
closures-meet-sq
1. P : ℝ ⟶ ℙ
2. Q : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. Q b0
6. a0 ≤ b0
7. c : ℝ
8. r0 ≤ c
9. c < r1
10. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
11. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
12. n : ℤ
13. 0 < n
14. r0 ≤ ((snd(s[n - 1])) - fst(s[n - 1]))
15. ((snd(s[n - 1])) - fst(s[n - 1])) ≤ (((snd(s[0])) - fst(s[0])) * c^n - 1)
16. (fst(s[n - 1])) ≤ (fst(s[n]))
17. (snd(s[n])) ≤ (snd(s[n - 1]))
18. ((snd(s[n])) - fst(s[n])) ≤ (((snd(s[n - 1])) - fst(s[n - 1])) * c)
⊢ r0 ≤ ((snd(s[n])) - fst(s[n]))
BY
{ ((GenConclTerm ⌜s[n]⌝⋅ THENA Auto) THEN RepeatFor 2 (D -2) THEN Reduce 0 THEN Auto THEN Unhide THEN Auto) }
Latex:
Latex:
1. P : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. Q : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. a0 : \{a:\mBbbR{}| P a\}
4. b0 : \mBbbR{}
5. Q b0
6. a0 \mleq{} b0
7. c : \mBbbR{}
8. r0 \mleq{} c
9. c < r1
10. s : \mBbbN{} {}\mrightarrow{} (a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} )
11. \mforall{}n:\mBbbN{}
(((fst(s[n])) \mleq{} (fst(s[n + 1])))
\mwedge{} ((snd(s[n + 1])) \mleq{} (snd(s[n])))
\mwedge{} (((snd(s[n + 1])) - fst(s[n + 1])) \mleq{} (((snd(s[n])) - fst(s[n])) * c)))
12. n : \mBbbZ{}
13. 0 < n
14. r0 \mleq{} ((snd(s[n - 1])) - fst(s[n - 1]))
15. ((snd(s[n - 1])) - fst(s[n - 1])) \mleq{} (((snd(s[0])) - fst(s[0])) * c\^{}n - 1)
16. (fst(s[n - 1])) \mleq{} (fst(s[n]))
17. (snd(s[n])) \mleq{} (snd(s[n - 1]))
18. ((snd(s[n])) - fst(s[n])) \mleq{} (((snd(s[n - 1])) - fst(s[n - 1])) * c)
\mvdash{} r0 \mleq{} ((snd(s[n])) - fst(s[n]))
By
Latex:
((GenConclTerm \mkleeneopen{}s[n]\mkleeneclose{}\mcdot{} THENA Auto)
THEN RepeatFor 2 (D -2)
THEN Reduce 0
THEN Auto
THEN Unhide
THEN Auto)
Home
Index