Step
*
2
1
2
1
1
of Lemma
closures-meet-sq
.....assertion.....
1. [P] : ℝ ⟶ ℙ
2. [Q] : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. [%4] : (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. [%5] : (r0 ≤ c) ∧ (c < r1)
8. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
9. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
10. v : ℝ
11. ((snd(s[0])) - fst(s[0])) = v ∈ ℝ
12. ∀n:ℕ. r0≤(snd(s[n])) - fst(s[n])≤v * c^n
⊢ lim n→∞.v * c^n = r0
BY
{ (Assert ⌜lim n→∞.v * c^n = v * r0⌝⋅
THENA (BLemma `rmul-limit`
THEN Auto
THEN BLemma `rpowers-converge-ext`
THEN Auto
THEN RWO "rabs-of-nonneg" 0
THEN Auto
THEN Unhide
THEN Auto)
) }
1
1. [P] : ℝ ⟶ ℙ
2. [Q] : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. [%4] : (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. [%5] : (r0 ≤ c) ∧ (c < r1)
8. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
9. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
10. v : ℝ
11. ((snd(s[0])) - fst(s[0])) = v ∈ ℝ
12. ∀n:ℕ. r0≤(snd(s[n])) - fst(s[n])≤v * c^n
13. lim n→∞.v * c^n = v * r0
⊢ lim n→∞.v * c^n = r0
Latex:
Latex:
.....assertion.....
1. [P] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. [Q] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. a0 : \{a:\mBbbR{}| P a\}
4. b0 : \mBbbR{}
5. [\%4] : (Q b0) \mwedge{} (a0 \mleq{} b0)
6. c : \mBbbR{}
7. [\%5] : (r0 \mleq{} c) \mwedge{} (c < r1)
8. s : \mBbbN{} {}\mrightarrow{} (a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} )
9. \mforall{}n:\mBbbN{}
(((fst(s[n])) \mleq{} (fst(s[n + 1])))
\mwedge{} ((snd(s[n + 1])) \mleq{} (snd(s[n])))
\mwedge{} (((snd(s[n + 1])) - fst(s[n + 1])) \mleq{} (((snd(s[n])) - fst(s[n])) * c)))
10. v : \mBbbR{}
11. ((snd(s[0])) - fst(s[0])) = v
12. \mforall{}n:\mBbbN{}. r0\mleq{}(snd(s[n])) - fst(s[n])\mleq{}v * c\^{}n
\mvdash{} lim n\mrightarrow{}\minfty{}.v * c\^{}n = r0
By
Latex:
(Assert \mkleeneopen{}lim n\mrightarrow{}\minfty{}.v * c\^{}n = v * r0\mkleeneclose{}\mcdot{}
THENA (BLemma `rmul-limit`
THEN Auto
THEN BLemma `rpowers-converge-ext`
THEN Auto
THEN RWO "rabs-of-nonneg" 0
THEN Auto
THEN Unhide
THEN Auto)
)
Home
Index