Step
*
2
1
2
2
of Lemma
closures-meet-sq
1. [P] : ℝ ⟶ ℙ
2. [Q] : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. [%4] : (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. [%5] : (r0 ≤ c) ∧ (c < r1)
8. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
9. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
10. ∀n:ℕ. r0≤(snd(s[n])) - fst(s[n])≤((snd(s[0])) - fst(s[0])) * c^n
11. ∃y:ℝ. (lim n→∞.fst(s[n]) = y ∧ lim n→∞.snd(s[n]) = y)
⊢ ∃y:ℝ. (y ∈ closure(λz.(↓P z)) ∧ y ∈ closure(λz.(↓Q z)))
BY
{ (RepeatFor 2 (ParallelLast) THEN UnfoldTopAb 0) }
1
1. [P] : ℝ ⟶ ℙ
2. [Q] : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. [%4] : (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. [%5] : (r0 ≤ c) ∧ (c < r1)
8. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
9. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
10. ∀n:ℕ. r0≤(snd(s[n])) - fst(s[n])≤((snd(s[0])) - fst(s[0])) * c^n
11. y : ℝ
12. lim n→∞.snd(s[n]) = y
13. lim n→∞.fst(s[n]) = y
⊢ ∃x:ℕ ⟶ ℝ. (lim n→∞.x[n] = y ∧ (∀n:ℕ. ((λz.(↓P z)) x[n])))
2
1. [P] : ℝ ⟶ ℙ
2. [Q] : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. [%4] : (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. [%5] : (r0 ≤ c) ∧ (c < r1)
8. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
9. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
10. ∀n:ℕ. r0≤(snd(s[n])) - fst(s[n])≤((snd(s[0])) - fst(s[0])) * c^n
11. y : ℝ
12. lim n→∞.fst(s[n]) = y
13. lim n→∞.snd(s[n]) = y
⊢ ∃x:ℕ ⟶ ℝ. (lim n→∞.x[n] = y ∧ (∀n:ℕ. ((λz.(↓Q z)) x[n])))
Latex:
Latex:
1. [P] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. [Q] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. a0 : \{a:\mBbbR{}| P a\}
4. b0 : \mBbbR{}
5. [\%4] : (Q b0) \mwedge{} (a0 \mleq{} b0)
6. c : \mBbbR{}
7. [\%5] : (r0 \mleq{} c) \mwedge{} (c < r1)
8. s : \mBbbN{} {}\mrightarrow{} (a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} )
9. \mforall{}n:\mBbbN{}
(((fst(s[n])) \mleq{} (fst(s[n + 1])))
\mwedge{} ((snd(s[n + 1])) \mleq{} (snd(s[n])))
\mwedge{} (((snd(s[n + 1])) - fst(s[n + 1])) \mleq{} (((snd(s[n])) - fst(s[n])) * c)))
10. \mforall{}n:\mBbbN{}. r0\mleq{}(snd(s[n])) - fst(s[n])\mleq{}((snd(s[0])) - fst(s[0])) * c\^{}n
11. \mexists{}y:\mBbbR{}. (lim n\mrightarrow{}\minfty{}.fst(s[n]) = y \mwedge{} lim n\mrightarrow{}\minfty{}.snd(s[n]) = y)
\mvdash{} \mexists{}y:\mBbbR{}. (y \mmember{} closure(\mlambda{}z.(\mdownarrow{}P z)) \mwedge{} y \mmember{} closure(\mlambda{}z.(\mdownarrow{}Q z)))
By
Latex:
(RepeatFor 2 (ParallelLast) THEN UnfoldTopAb 0)
Home
Index